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Philippe Sansonetti 
Biosketch 
 
Sansonetti pioneered cellular microbiology by designing a novel multidisciplinary framework to 
decipher the complex molecular cross-talks engaged between the invasive bacterium Shigella 
and its host, supporting the occurrence of dysentery.  With his group, he achieved ground-
breaking contributions encompassing a unique combination of basic, applied, and clinical 
research, and capitalizing on his deciphering of the strategies used by Shigella to escape host 
immune responses, he could identify essential intracellular molecules and pathways sensing 
and responding to pathogens. 
 
Contributions in basic research: 
Sansonetti established Shigella as a unique model to study invasive pathogens. By discovering 
the Shigella virulence plasmid encoding cell invasion via a Type III secretion system (T3SS) 
and its dedicated effectors (1-9), and by providing the first exhaustive identification of the 
genetic sequences (plasmid and chromosome) allowing this invasive pathogen to disrupt and 
invade the intestinal epithelium (10, 11) (12-14). He developed cell assay systems that led to 
discovery and characterization of key phenotypes like actin-dependent bacterial entry into 
epithelial cells and bacterial escape into the cytosol (15, 16), followed by actin-dependent 
intracellular motility and cell-to-cell spread (17, 18). In the following years, he deciphered the 
fine molecular signals leading to actin assembly, organization and disassembly supporting the 
dynamics of bacterial entry foci and cytosolic motility (19-36). He also identified essential 
mechanisms linking inflammatory destruction of the epithelium to development of the invasive 
process, i.e. he was the first to discover a caspase-1-dependent, proinflammatory apoptosis 
process of macrophages triggered by invasive Shigella, a prelude to pyroptosis and the 
inflammasome (37-42), and to describe the pro-inflammatory reprogramming of epithelial cells 
themselves, also linked to expression of the Shigella invasive phenotype (43). He eventually 
provided a unique integrative view of infection, in vitro and in vivo (44), leading to better 
understanding how the host senses the bacterial danger and how the pathogen uses and 
subverts innate immune responses to respectively disrupt the epithelial barrier and survive 
humoral and cellular immune effectors (45-50). This succession of original discoveries set the 
basis of the novel model of interdisciplinary study of infections called “cellular microbiology”. 
 
In the past twenty years, they have unraveled several novel concepts:  
- Intracellular sensing of bacteria, leading to the discovery of Nod molecules as cytosolic 
sensors, and bacterial muropeptides as their proinflammatory agonists (51-53). 
- Identification and analysis of a battery of T3SS effectors regulating host responses by post-
translational modifications (i.e. phosphorylation, dephosphorylation, ubiquitylation) of 
molecules in the NF-κB and MAP-Kinase pathways, engaging genetic and epigenetic 
repression of innate immunity gene expression (54-58). His group showed that transcription of 
the plasmid genes encoding these effectors (i.e. ospG, ospF and several ipaH genes) is under 
the control of T3SS activation sensing via MxiE, a transcriptional activator (59). In addition, we 
could also show that Shigella has developed capacities to subvert essential mechanisms of 
cell homeostasis such as sumoylation (60) and autophagy (61, 62). 
- Subversion of cellular mechanisms of secretion by Shigella, involving Golgi disruption and 
receptor recycling arrest (63), and demonstration, with Salmonella, of the essential role of villin 
in engaging disruption of the apical epithelial brush border in preparation of entry (64).  
- Manipulation of connexin-based hemichannel functions of ATP secretion modulating cell 
surface dynamics and strongly repressing danger signals that warn the host of epithelial 
engagement by a pathogen (65). However, beyond their initial demonstration that Shigella 
strongly affects innate immune responses, including expression of epithelial antimicrobial 
peptides (66), thereby increasing its survival chances in front of inflammation caused by its 
invasive phenotype, they showed that Shigella also subverted adaptive immunity by engaging 
effector cells such as T and B lymphocytes.   
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- Blocking of T-cell migration by hydrolysis of PI(4,5)P2 (67, 68) and apoptotic killing of B cells 
by a secreted effector, IpaD (69), both contributing to Shigella creating a strong 
immunosuppressive environment (70). These studies have led to the « kiss and run » concept 
whereby Shigella engages and injects T3SS effectors into lymphocytes without getting into the 
dead end of cellular invasion, thereby amplifying its immunosuppressive capacity (71).  
- In the more recent years, Sansonetti also engaged in identifying the environmental conditions 
faced by Shigella when reaching the gut epithelial surface and developed elegant reporter 
strains to explore these conditions and how the bacteria adapt accordingly. This led, for 
instance, to the recognition of the presence of oxygen at the epithelial surface and the major 
role plaid by Fnr, the bacterial sensor of oxygen tension in regulating the function of the T3SS 
(72). By engineering a reporter strain in which expression of a fast-folding/fast quenching GFP 
was put under the control of a mxiE-sensitive promoter that is active only upon activation of 
the T3SS, he could demonstrate that the T3SS was functional only during the phases of 
engagement of the plasma membrane for entry and cell-to-cell spread (73).  
- More recently, he developed an innovative method combining global analysis of Shigella 
infection foci in the Guinea pig colon, a model that he showed is susceptible to shigellosis. By 
combining tiled confocal imaging of the colonic tissue with “machine learning” and big data 
management, they demonstrated that Shigella primarily invades the epithelial crypt (74), a key 
structure that accounts for epithelial regeneration. They also demonstrated that Shigella sonnei 
harbors and uses a Type 6 secretory system (T6SS) that allows its ecological substitution to 
the expense of resident Escherichia coli. A clear demonstration that subversion of the 
microbiota is an obligatory first step of colonisation/invasion of the mucosal surface for a 
pathogen (75). These successive discoveries represent a true “second breath” of Shigella 
research and are of more global value in the study of bacterial pathogenesis, leading to the 
renewed concept of “cellular microecology”. 
 
Shigella vaccine development: 
Sansonetti was first to develop a vaccine against shigellosis by rational genetic attenuation of 
virulence based upon the knowledge his group had accumulated on the genetic bases of cell 
and tissue invasion (76). These candidate vaccines have successfully gone through phase 1 
and 2 clinical trials in USA, UK and France (77-82). In 2009, he was successful in being 
awarded the coordination of a major European-Union funded grant (12 million Euros) - 
STOPENTERICS - to hasten the conception and clinical development of a novel generation of 
vaccines against Enterotoxigenic Escherichia coli (ETEC) and Shigella, the two major causes 
of severe enteric infections in the developing world. Following this program, a novel prototype 
of conjugate vaccine in which the somatic/serotype specific O-polysaccharides are chemically 
synthesized (83, 84) has now completed a phase 1 trial at Tel Aviv University Vaccine Center 
(85), showed strong immunogenicity to such a level that the Bill and Melinda Gates has 
decided to fund its completion (4 serotypes) and the necessary future clinical trials: a challenge 
study is on its way as well as a large phase II study in sub-Saharan Africa. 
 
Gut microbiome, from homeostasis to disease: 
In the past 12 years, thanks to the support of the Howard Hughes Medical Institute and the 
successive award of two prestigious European Council (ERC) Advanced grants respectively 
called HOMEOEPITH and DECRYPT, Sansonetti started to tackle the field of bacterial 
symbiosis, with the aim of switching it from descriptive metagenomics to a true mechanistic 
“cellular microbiology of symbiosis”, capitalizing on their work on pathogens to identify the 
molecular cross-talks achieving symbiotic/mutualistic interactions between the gut mucosa 
and the microbiome - “from metagenomics to experimentomics”- particularly how bacteria of 
the gut microbiome regulate epithelial homeostasis.  
They have developed essential tools, such as exhaustive mutant libraries, and entered the 
field of “culturomics” to be able to functionally analyze uncultivable microbes. Here are two 
examples:  
- Global mutagenesis of the genome of a bona fide symbiont, Lactobacillus casei, thereby 
providing the first genome-wide functional analysis of a symbiont’s colonization of the gut (86).  
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- Breakthrough development of a technique of in vitro growth of the pathobiont “segmented 
filamentous bacterium” (SFB), a pioneer gut colonizer that primes the maturation of the gut 
mucosal immune system (87).  
He also demonstrated essential/original basic mechanisms governing maintenance of the gut-
microbiota homeostasis such as: 
- Unraveled an epigenetic mode of regulation controlling the expression of antimicrobial 
peptides that are potent regulators of the microbiota balance. This discovery opens the way to 
use epigenetic pharmacology to explore the capacity to enhance epithelial antimicrobial 
peptides expression in circumstances requiring increased protection at the mucosal surface 
(88).  
- He was also first to show that muramyl-dipeptide (MDP) and peptidoglycan from the 
microbiota exert a potent cytoprotective effect upon gut stem cells which express a high level 
of Nod2, the cytosolic receptor for MDP submitted to cytotoxic/genotoxic stress (89). This 
breakthrough discovery opens the way to better understanding of the role of the microbiota in 
regulating epithelial regeneration. It also opens a novel angle to the pathogenesis of Crohn’s 
disease that may be more of a pathology of delayed epithelial repair following an injury (90). A 
recent contribution of his group illuminated the cytoprotective mechanism by demonstrating 
that axtivation of the Nod2 cascade in stem cells elicited autophagy/mitophagy, hence 
protecting stem cells against the deleterious effect of oxygen radicals produced under 
genotoxic stress (91). 
- By combining LASER-capture microdissection on murine cecal and colonic tissue sections, 
DNA extraction, pyrosequencing and 16S metataxinomics, Sansonetti identified a “crypt-
specific core microbiota” dominated by a set strictly aerobic, non-fermentative bacterial genus 
belonging in large majority to Acinetobacter, Delftia and Stenotrophomonas genera (92). They 
were able to grow these microorganisms and confirmed their presence in the cecal/colonic 
crypts in wild rodents, thereby eliminating a breeding bias. They demonstrated that endotoxins 
from CSCM members were the dominant crypt bacterial agonists causing necroptosis of stem 
cells and progenitor/proliferative cells, and accelerated differentiation of mature/non-cycling 
cells (93). On these bases, He proposed a theory according to which a limited set of 
environmental bacteria have been engaged by co-evolution in a potent symbiotic interaction 
that regulates epithelial proliferation/differentiation and protects the intestinal crypt against 
microbial and genotoxic aggressions. 
This innovative work has implications in the regulation of epithelial development and repair – 
particularly following cytotoxic stress - and addresses issues such as chronic intestinal 
inflammation and rupture of the epithelial barrier in conditions of imbalanced diet, i.e. high fat 
diet leading to quick and major combination of gut dysbiosis and collapse of epithelial 
impermeability (94). This work is also relevant to the pathogenesis of colorectal cancer which 
appears to involve the combination of a dysbiosis and the excessive presence of certain 
pathobionts like Streptococcus gallolyticus whose overgrowth capacity is explained by its 
production of a colicin that causes its ecological substitution to the expense of enterococci and 
other firmicutes in conditions of high concentration of secondary bile salts that is caused by 
the oncogenic environment (95). This is a novel angle in studies of the host-microbe 
relationship.  
Sansonetti’s more recent work has progressed in defining the dysbiosis accompanying the 
development of colorectal cancer in humans. They have shown that upon transplantation to 
mice, samples of dysbiotic stools from CRC patients caused crypt aberrations and epigenetic 
modifications corresponding to hypo/hyper methylation in promoters of tumor suppressor and 
oncogenic genes similar to those observed in patients. A cellular microbiology of CRC is on its 
way (96).  
- Last but not least, they have shown an important role plaid by the microbiota in controlling 
absorption of micelled alimentary lipids. Major bacterial effectors accounting for the control of 
lipid absorption have been identified (97). This work has possible implications in infant nutrition, 
considering the high concentration of lipids in maternal milk, and in adults to better control 
cardiovascular risk in relation to the qualitative and quantitative parameters of absorbed lipids. 
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Translational research: 
On these bases, in addition to our vaccine programs, we develop several translational projects 
such as: 
- A discovery program of molecules stimulating the expression of epithelial antimicrobial 
peptides. As above-mentioned, our recent evidence indicate that induction of antimicrobial 
peptides expression is strongly controlled by epigenetic mechanisms that are relaxed by 
epigenetic drugs such as HDAC inhibitors (88).  
- A parallel clinical study on gut bacterial translocation in leukemic patients in bone marrow 
aplasia following chemotherapy and how it relates to the bactericidal role of antimicrobial 
peptides. Such patients would be candidates for therapeutic strategies enhancing barriers 
protection by inducing high levels of antimicrobial peptides (Wyplosz et al. manuscript in 
preparation). 
 
Sansonetti has also completed an ambitious study of the pathogenesis of child stunting and 
associated Pediatric Environmental Enteropathy (PEE) in sub-Saharan Africa (Central African 
Republic and Madagascar). It is the first etiology of malnutrition in infants in low-income areas 
and responds to small intestinal overgrowth (SIBO) of a dysbiotic microbiota whose 
composition is unknown. This dysbiosis is considered responsible for low-grade chronic 
mucosal inflammation and intestinal atrophy that reduces digestive and absorptive capacities 
in the duodeno-jejunum. Their study –MICROBIOTA – was largely aimed at identifying the 
composition of this dysbiosis and, in this basis, disentangle the pathogenesis of PEE and offer 
biomarkers for early detection, as well as preventive and therapeutic solutions to eliminate 
stunting and psychomotor retardation that are the dominant consequences of PEE. Their 
results show massive proliferation of oro-pharyngeal bacterial taxa in the duodenum and a 
signature of this dysbiosis of the upper intestinal tract can be found in the feces in comparison 
with matched non-stunted children (98). 
 

In summary, Sansonetti has made outstanding basic discoveries that have forged the 
multidisciplinary field of microbial pathogenesis, while also developing translational 
research programs largely aimed at improving health of children in the most 
impoverished areas of the planet, well in line with the Pasteurian tradition. 
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